Novel agonist of GDNF family ligand receptor RET for the treatment of experimental neuropathy

نویسندگان

  • Maxim M. Bespalov
  • Yulia A. Sidorova
  • Ilida Suleymanova
  • James Thompson
  • Oleg Kambur
  • Viljami Jokinen
  • Tuomas Lilius
  • Gunnar Karelson
  • Laura Puusepp
  • Pekka Rauhala
  • Eija Kalso
  • Mati Karelson
  • Mart Saarma
چکیده

Neuropathic pain is a chronic pain condition caused by lesion or disease affecting the somatosensory system. The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of NP and stimulate regeneration of sensory neurons in vivo. Here we report the development of the compound BT18 that selectively activates GFL receptors, alleviates pain and restores damaged dorsal root ganglion (DRG) neurons in rat models of NP. Significance statement Neuropathic pain (NP) is a chronic syndrome caused by different diseases and lesions affecting nervous system. Earlier studies demonstrated that neurotrophic factors-the glial cell line-derived neurotrophic factor (GDNF) and artemin-could reverse the damage done by lesions in animal models of NP. We demonstrate for the first time that a small molecule can activate receptor of GDNF and artemin, it alleviates pain symptoms in vivo in two animal models of NP and restores to normal the molecular markers expressed in sensory neurons. This compound, termed BT18, can pave way for creating novel disease modifying therapies for NP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treating small fiber neuropathy by topical application of a small molecule modulator of ligand-induced GFRα/RET receptor signaling.

Small-fiber neuropathy (SFN) is a disorder of peripheral nerves commonly found in patients with diabetes mellitus, HIV infection, and those receiving chemotherapy. The complexity of disease etiology has led to a scarcity of effective treatments. Using two models of progressive SFN, we show that overexpression of glial cell line-derived neurotrophic factor (GDNF) in skin keratinocytes or topical...

متن کامل

Artemin, a Novel Member of the GDNF Ligand Family, Supports Peripheral and Central Neurons and Signals through the GFRα3–RET Receptor Complex

The glial cell line-derived neurotrophic factor (GDNF) ligands (GDNF, Neurturin [NTN], and Persephin [PSP]) signal through a multicomponent receptor system composed of a high-affinity binding component (GFRalpha1-GFRalpha4) and a common signaling component (RET). Here, we report the identification of Artemin, a novel member of the GDNF family, and demonstrate that it is the ligand for the forme...

متن کامل

Determinants of ligand binding specificity in the glial cell line-derived neurotrophic factor family receptor alpha S.

The glial cell line-derived neurotrophic factor (GDNF) family comprise a subclass of cystine-knot superfamily ligands that interact with a multisubunit receptor complex formed by the c-Ret tyrosine kinase and a cystine-rich glycosyl phosphatidylinositol-anchored binding subunit called GDNF family receptor alpha (GFRalpha). All four GDNF family ligands utilize c-Ret as a common signaling recepto...

متن کامل

Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells.

Glial cell line-derived neurotrophic factor (GDNF) has been shown to signal through a multicomponent receptor complex consisting of the Ret receptor tyrosine kinase and a member of the GFRalpha family of glycosylphosphatidylinositol-anchored receptors. In the current model of GDNF signaling, Ret delivers the intracellular signal but cannot bind ligand on its own, while GFRalphas bind ligand but...

متن کامل

RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association.

The RET receptor tyrosine kinase is essential to vertebrate development and implicated in multiple human diseases. RET binds a cell surface bipartite ligand comprising a GDNF family ligand and a GFRα coreceptor, resulting in RET transmembrane signaling. We present a hybrid structural model, derived from electron microscopy (EM) and low-angle X-ray scattering (SAXS) data, of the RET extracellula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016